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We present a satellite path-planning technique able to make a set of identical spacecraft acquire a given

configuration. The technique exploits a behavior-based approach to achieve an autonomous and distributed control

over the relative geometry,making use of limited sensorial information. A desired velocity is defined for each satellite

as a sumof different contributions coming fromgeneric high-level behaviors. Thebehaviors are further definedbyan

inverse-dynamic calculation dubbed equilibrium shaping.We show that by considering only three different kinds of

behavior it is possible to acquire a number of interesting formations, and we describe the theoretical framework

needed to find the entire set.We find that by allowing a limited amount of communication the techniquemay be used

also to form complex lattice structures. Several control feedbacks able to track the desired velocities are introduced

and discussed. Our results suggest that sliding-mode control is particularly appropriate in connection with the

developed technique.

I. Introduction

D OES a coherent group behavior require an explicit mechanism
of cooperation? Can useful tasks be accomplished by a

homogeneous team of mobile agents without direct communication
and using decentralized control? These questions have been
addressed by an increasingly large community of computer
scientists, engineers and scientists in general working in a field of
research that we may call swarm intelligence or collective robotics
[1]. The relevance of the possible answers to the aerospace
community is significant. Space engineers are currently developing
autonomous systems and are envisaging space missions that would
certainly benefit from a deeper understanding of the collective
behavior of similar and dissimilar agents. Multirobot planetary
exploration, on-orbit self-assembly, and satellite swarms for
coordinated observations are just examples of what could be
achieved if our technology level was proven to be sufficient to
provide spacecraft swarms with autonomous decision capabilities.
As recently proposed by Ayre et al. [2], it would be possible to build
large solar panels or large antennas by exploiting collective emerging
behaviours. The use of collective robotics is also very relevant for
advanced mission architectures such as those recently studied by
ESA (APIES mission [3]) and NASA (ANTS mission [4]) making
use of satellite swarms to explore the asteroid belt.

Because of these synergies between collective robotics and space
mission design, it makes sense to try to design a decentralized control
system for a satellite swarm, relying upon the lessons learned from
collective robotics. Drawing inspiration from this research field we
will often use the term “agent” to indicate a particular spacecraft
belonging to some group. When a complex system of many agents

has to act in a coordinated manner, the action selected by each agent
may or may not take into account the decisions taken by the others.
The smaller the number of communications required between the
agents, the smaller the degree of coordination of the system. On the
other hand, a small amount of communication leads to a simple and
robust system. The information exchanged with the other swarm
components is useful but not necessary to define the geometric and
kinematical representation of the time-varying environment that will
then influence the agent’s action selection.Many studies dealingwith
terrestrial robot navigation [5], spacecraft proximity and rendezvous
operations [6], and self-assembly structures in space [7] have taken
the approach of defining an artificial potential field to model the
environment. With this method the action selection is made by
following the local gradient of the artificial potential field. Although
thismethod allows a precisemodeling of the external environment, it
also introduces local undesired equilibrium configurations that the
systemmay reach. A Laplacian-based potential field [8] or the use of
harmonic functions [9], along with the introduction of randomwalks
[10], have been proposed to alleviate the problem.

Another approach to the action selection problem was introduced
by Schoner and Dose [11], based on the dynamic systems theory. In
this approach the state space contains behavioral variables such as
heading directions or velocities. All the contributions given by each
behavior are combined bymeans of weighting parameters into a final
dynamical system that defines the course of behaviors that each agent
will follow. The weighting parameters can be evaluated by solving a
competitive dynamic system operating on a faster time scale.
Recently other approaches have also been proposed for space
applications, in the attempt to obtain some degree of decentralized
coordination in a group of satellites. Ren and Beard [12] and Lawton
et al. [13] introduced what they call a virtual structure method to
design a decentralized formation control scheme, whereas Campbell
[14] applied some results of the optimal control theory to design a
coordinated formation reconfiguration maneuver. These methods
aim at reaching a unique final configuration in which each satellite
has its position preassigned. When a swarm of homogeneous agents
is considered and the task is given to acquire a certain final geometry,
the final positions occupied by each agent in the target configurations
should be chosen in an autonomous way and should be part of the
global behavior emerging from the individual tasks assigned.

In this paper we investigate the possibility of using the limited
local sensing capabilities of each single spacecraft to coordinate the
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individual responses and achieve a common task. In particular we
assume that each spacecraft can process locally sensed attitude and
interspacecraft distances, to obtain a three-dimensional relative
position measurement with respect to other spacecraft in the
formation. The common task we try to achieve is the acquisition of a
given relative geometry in which positions are not preassigned to
particular satellites. We develop a behavior-based path-planning
algorithm [15] able to achieve this. Based on selective sensory
information, each behavior contributes to the final decision taken by
the spacecraft control system. With respect to previously developed
techniques the new approach presented has two advantages: it limits
intersatellite communications to a minimum amount, and it
autonomously assigns the satellites’ positions in the final formation.

II. Methodology

Consider the relativemotion ofN spacecraft, randomly distributed
in the space neighboring N targets, and subject to the gravitational
attraction of a near planet. In the local horizontal local vertical
(LHLV) reference frame associated with a given target orbit we
define the target positions �i, i� 1 . . .N and the initial states x0i , v

0
i ,

i� 1 . . .N of each spacecraft. Our goal is to build a real-time
navigation scheme, allowing each agent to decide its final target
relying just upon its limited sensor information, and to safely
navigate to it without conflicting with the other spacecraft. We use a
two-step approach:

1) First, a method is developed that defines, for each target
disposition and each agent neighborhood configuration, the desired
velocity vector of the agent as a sum of different weighted
contributions named “behaviors.”

2) Next, several control techniques are considered that allow each
spacecraft to track the desired kinematical field.

In this way the control design is completely independent of the
design of the desired velocity field and may be tackled separately.

III. Design of the Underlying Kinematical Field:
The Equilibrium Shaping

The approach we propose and that we call “equilibrium shaping”
draws inspiration from past published works on robot path planning
and artificial intelligence. In the work by Gazi [16] and Gazi and
Passino [17], some theoretical results have been introduced on the
dynamics of aggregating a swarm of robots. Each agent of the swarm
is there asked to follow a certain velocity field defined as the sum of
two different contributions, both dependent on the interagent
distance xij � xj � xi. The first contribution defines a linear global
gather behavior whereas the second one introduces an avoidance
behavior. The mathematical definition used by Gazi for the desired
velocity of the ith agent is

v di ��
X
j

xij

�
ci � bi exp

�
� xij � xij

k1

��
(1)

where ci, bi are coefficients whose values are uniquely determined
by the formation geometry, and k1 is a parameter that determines the
size of the avoid behavior sphere of influence. This method produces
a swarm inwhich each agent is preassigned to a particular place in the
final formation. We show how it is possible to achieve a global
swarm behavior that also solves the target assignment problem
autonomously. For a given set of positions in the space the target
assignment problem is the problem of associating every single agent
belonging to the swarmwith every element of the set on a one-to-one
basis. Such a problem can be autonomously solved by the swarm
defining the desired kinematical field according to the equilibrium
shaping approach proposed in this paper. This technique consists of
building a dynamical system that has as equilibrium points all the
possible agent permutations in the final target formation. The system
is then used as a definition for the desired velocities. It is essentially
an inverse approach that starts from the geometry of the final relative
configuration and works out the necessary agent behaviors to reach
that configuration.

Let us consider the simple example of a swarm of two satellites
that aims to reach a final configuration made up of the two geometric
positions given by �1 � �1; 0; 0� and �2 � ��1; 0; 0�. We have to
build a dynamical system that admits two equilibrium configura-
tions, one inwhich agent 1 is in �1 and agent 2 in �2, and one inwhich
the final positions are reversed.

We design our dynamic as a sum of three different behaviors that
we name “gather,” “avoid,” and “dock.” The mathematical
expression of each kind of behavior alongwith some brief comments
are listed as follows:

1) Gather Behavior. This behavior introduces N different global
attractors toward the N targets. The analytical expression of this
behavior contribution to the ith agent desired velocitymay bewritten
in the following form:

v Gather
i �

X
j

cj G�jj�j � xijj���j � xi� (2)

where  G is a mapping from positive real numbers to positive real
numbers that introduces some nonlinear dependency from the target
distance. This behavior may also be designed to account for the
gravitational field, as we shall see in the next section. There are some
important choices that we implicitly make whenwe choose this form
of the gather behavior. By allowing the cj coefficient to depend
solely on the targets and not on the agents, we make sure that each
component of the swarm is identical to the others so that agent
permutations do not change the swarm behavior. We also write the
function  G as dependent only on the distance so that an isotropy of
the desired velocity field around each hole is imposed. This may not
be desired in some particular problems, in which case some angular
dependency could be introduced. Moreover, because the main
objective of this contribution is to gather the spacecraft from
wherever they are, the vGather vector is nonnegligible everywhere in
the space around the target configuration.

2) Dock Behavior. This behavior introduces N different local
attractors toward the N targets. The component of the desired
velocity field due to each dock behavior has a nonnegligible value
only if the agent is in the neighborhood of the sink. The kD parameter
determines the radius of the sphere of influence of the dock behavior.
The expression used for this behavior is

v Dock
i �

X
j

dj D�jj�j � xijj; kD���j � xi� (3)

where  D is a mapping from positive reals to positive reals that
vanishes outside a given radius from the target. The same comments
made for the gather behavior still apply and the dock behavior is
similar to the gather one except that it is a local attractor and it
therefore governs the final docking procedure. In particular the dj
coefficients in Eq. (3) are solely dependent on the target positions and
not on the agents’ positions, to retain symmetry with respect to the
spacecraft permutations.

3) Avoid Behavior. This behavior establishes a relationship
between two different agents that are in proximity to each other. In
such a case a repulsive contribution will contribute to the desired
velocity field. The expression that describes the desired velocity for
this kind of behavior is as follows:

v Avoid
i �

X
j

b A�jjxi � xjjj; kA��xi � xj� (4)

where  A is a mapping from positive real to positive reals that
vanishes whenever the mutual distance is considered not to be
dangerous according to the value kA. Tomaintain symmetry between
all agents the b parameter does not depend on the particular agent.

According to the definitions given before, the desired velocity
field for a swarm of N agents and for a final formation made of N
targets is defined as follows:

vdi � vAvoidi � vDocki � vGatheri (5)

The resulting dynamical system, defined by the weighted sum of

450 IZZO AND PETTAZZI



different and often conflicting behaviors, can be written in the simple
form

_x� vdi � f�x;�; �� (6)

where we introduce vd � �vd1 ; . . . ; vdN �, x� �x1; . . . ; xN �, ��
��1; . . . ; �N �, and �� �cj; dj; b�. This last vector contains the
parameters that have to be chosen so that all the final desired
configurations are equilibrium points. As we took care of retaining
the symmetry of the dynamical system with respect to agent
permutations, the only relation that has to be fulfilled to impose the
existence of such equilibria can be written in the compact form

f �x� �; �;�� � 0 (7)

All other configurations, obtained by permutation of the �i, are
granted to be also equilibrium points. This equation will be referred
to as the equilibrium shaping formula, as it effectively allows us to
find the value of � able to shape the equilibria of the dynamical
system represented by Eq. (6). The study of what possible equilibria
may be shaped with the preceding equation reveals to be intriguing
and well described by the theory of symmetry groups. Let us take a
closer look at the equilibrium shaping formula. It is a set of N
vectorial equations, each one related to a particular target position �i:

XN
j�1
i≠j

f�cj G�jj�j � �ijj� � dj D�jj�j � �ijj; kD�

� b A��j � �ijj; kA����j � �i�g � 0 (8)

To highlight the unknowns in Eq. (8) it is convenient write the
equilibrium shaping formula in the form

E �c1; . . . ; cN; d1; . . . ; dN �T � g

where the matrix E and the vector g depend on the functions  
chosen to represent the various behaviors on the target positions �
and on the parameter b. This set of equations represents, for each
target disposition and for each choice of the parameters kD and kA, a
linear set of equations in the 2N unknowns cj, dj. Depending on the
spatial distribution of the target points we might be able to find
solutions. Let us further investigate the general case: a set of 3N
equations in 2N unknowns and no possible solution. We must rely
upon the linear dependence of some of the equations. We introduce
the punctual symmetry groupG of the target positions.G contains all
the matrices R 2 orth�3� that map the set of the target positions into
itself.Whenever two target points �i, �j are equivalent with respect to
G (i.e., 9R 2 G such that R�i � �j) then the two corresponding
equations are linearly dependent if we set ci � cj, di � dj. This
statement can easily be proven by premultiplying Eq. (8) by a matrix
R 2 G and using the identity between the various coefficients. This
simple trick allows us to count the number of independent vectorial
equations.

Once we know howmany independent vectorial equations we are
dealing with, we also know that each of them counts as three, two,
one, or even zero scalar independent equations according to the
following simple rule: each independent vectorial equation written
for the �i position is equivalent to a single scalar equationwhenever a
symmetry axis passes through it, to two scalar equations if a
symmetry plan passes through �i, and it is an identity ifmore than one
symmetry axis passes through �i. If none of these rules is applicable,
the equation counts as three scalar independent equations.

As an example let us consider the hexagonal Bravais lattice shown
in Fig. 1. The target positions belonging to this formation can be
divided into two different groups (the prism vertices and the base
centers) belonging to two different symmetry classes. We therefore
start with two linearly independent vectorial equations. As a
symmetry plane passes through the vertices, the corresponding
vectorial equation counts as two equations. As a symmetry axis
passes through the hexagon centers, the corresponding vectorial
equation counts as one equation and the equilibrium shaping formula
may therefore reduced to a total of three scalar equations if we set
ci � cj, di � dj among the positions belonging to the same group.

In Table 1 some formations are listed together with the number of
independent equations and unknowns that characterize them. Some
of the formations presented in Table 1 draw inspiration from thewell-
known Bravais lattice spatial configurations, illustrated in Fig. 2.

Whenever the number of equations is less than the number of
unknowns, the choice of the various parameters may be made in
many different ways. Exploiting this fact, the choice may be made

Fig. 1 Formation with a hexagonal-P shape.

Table 1 Count of the equations and the unknowns for different

formations

Formation shape Number of equations Number of unknowns

All regular solids 1 2
All regular polygons 1 2
Pyramids with a regular
basis

3 4

Cubic-P 1 2
Cubic-I 1 4
Cubic-F 2 4
Tetragonal-P 2 2
Tetragonal-I 2 4
Orthorhombic-P 3 2
Orthorhombic-I 3 4
Orthorhombic-C 4 4
Orthorhombic-F 6 4
Hexagonal-P 3 4

Fig. 2 Visualization of some formations.
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differently by each agent and may be seen as the “subjective” view
that the ith spacecraft has of the equilibrium condition. There is no
need to agree on the particular solution chosen.

Let us consider the case in which the target positions �i form an
icosahedron. For this particular target geometry (see Table 1 under
regular solids) the equilibrium shaping formula reduces to a single
scalar relation:

c� �5�R � h�e�‘2=kA � 5�R� h�e�‘02=kA � 2Re�2R
2=kA �b

� �5�R � h�e�‘2=kD � 5�R� h�e�‘02=kD � 2Re�2R
2=kD �d (9)

where the quantities ‘ and R are, respectively, the edges of the
icosahedron and the radius of the sphere in which the icosahedron
can be inscribed, whereas ‘0 and h can be written as follows:

h�
�����������������������������������
R �

�
‘

2 sin� �
10
�
�

2
s

‘0 �
��������������������������������������������������
�R� h�2 �

�
‘

2 sin� �
10
�
�

2
s

For a fixed parameter b, Eq. (9) defines a relation between the two
remaining parameters c and d. Any choice of these two parameters
leads to a dynamical system describing the desired velocity having
the icosahedron as equilibrium point. Such a dynamical system has
the following form:

_xi �
XN
j�1
��b exp��jjxi � xjjj2=kA���xi � xj�

�
XN
j�1
��c � d exp��jj�i � �jjj2=kD����i � �j� (10)

The expression used for the function  is the one proposed by Gazi
[16] and Gazi and Passino [17]. The function  may be defined in
different ways to decrease the computational load as done, for
example, by Large et al. [18] where a simple sine function is used.
One important issue that has to be taken into account in the definition
of the A function is that of collision avoidance. In particular a proper
definition of the  A function has to take into account the real
dimensions of the spacecraft belonging to the formation so that
collision between the spacecraft can be avoided with a reasonable
margin. In Fig. 3 the outcome of a numerical integration of the
dynamical system defined by Eq. (6) is shown in the case
b� 1:1 s�1, d� 0:3 s�1, k1 � k2 � 1 m2, l� 2 m. The initial
positions of the various agents have been randomly generated on the
surface of a sphere of radius 20 times the length of the icosahedron

edge. In this particular simulation the minimum distance occurring
between two spacecraft is 0.87 times the length of the icosahedron
edge. The lines shown in Fig. 3 are the trajectories that each agent,
having chosen d and c, foresees and uses to evaluate its desired
velocity. We note that the agents do not perform any numerical
integration to plan their path, only a simple algebraic calculation.
During various simulations the rise of emerging behaviors due to the
interaction between different conflicting behaviors [15] may be
observed. As a final remark we note here that using the functions  
proposed by Gazi [16] may lead to local minima configurations, that
is, equilibrium configurations different from the desired one. A
proper choice of the b, c, and d parameters in the space of the
solutions of the equilibrium shaping formula significantly alleviates
this problem [19].

IV. Exploiting the Gravitational Environment

The desired kinematical field designed in the preceding section
allows the final formation to be reached following forced trajectories
that are not geodesics. It is not difficult to imagine that the control
system will struggle to follow these trajectories, using unnecessarily
large amount of propellant whenever the gravitational forces become
significant. Amodificationmay be introduced that takes into account
and exploits the geodesics, to reduce the overall mass consumption.
We start from the well-known system of Hill equations [20]:8><

>:
�x � 2! _y � 3!2x� 0

�y� 2! _x� 0

�z� !2z� 0

(11)

where �� �x; y; z� is the position of the spacecraft with respect to an
LHLV reference frame moving with angular velocity ! (the
reference orbit is here circular). This set of equations has an exact
analytical solution in the form

�
_�

� �
� A�t� B�t�

C�t� D�t�
� �

�0

_�0

� �

where t is time, ��0; _�0� � ���t� 0�; _��t� 0��, and the matricesA,
B, C, andD can be easily found in the literature [7]. The preceding
solution can be used to define a new gather behavior that exploits the
gravitational force to reach the final desired configuration. Requiring
that a given satellite has to reach a certain point �d after a fixed time
td, the following relation has to be fulfilled:

� d � ��td� �A�td�x0 � B�td� _x0
Taking this into account we may assign for each position in space xi
and each target belonging to the final formation �j a new gather
velocity vector given by

v Gather
i � 1

N

X
j

B�1�j � B�1Axi (12)

where A�A��̂d � t�, B� B��̂d � t�, and �̂d is the time in which,
from the beginning of the simulation, the agent is required to reach
the center of the desired formation. Note that no boundary condition
can be enforced on the final velocity of the approach phase as long as
the parameter �̂d is held fixed. Even though the resulting desired
velocity vector depends explicitly on the time, in a practical
application the agent clocks need not be synchronized. This
contribution is added to the dock behavior and the avoid behavior to
build the final desired kinematical field. Unfortunately Eq. (12) is
singular when t approaches �̂d, that is, in the final part of the target
acquisition. Besides, near the targets the desired velocity due to this
new gather behavior is higher than needed (the spacecraft has to get
out of a ballistic trajectory to acquire the targets). For these reasons
the desired kinematical field will be divided in two different parts,
one far from the desired final configuration, in which the gather
behavior takes into account the gravitational force, and one close to
the desired final formation, in which space is considered to be flat.
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Fig. 3 Example of desired trajectories for an icosahedron-shaped

target formation.
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The geometrical shape of the edges of these two different zones of
space can be easily set as a sphere of radius Rs, that can be
considered, togetherwith the desired gather time �̂d, as a parameter to
be decided by the system designer.

V. Feedback Synthesis

In general the agent will not possess the desired velocity and a
control system has to be designed that is able to reduce the error
between the actual velocity and the desired one. In this section,
different feedbacks achieving this will be derived and discussed. A
simplified dynamics is considered throughout this chapter for the
control design purpose. In particular, the motion of the ith satellite
belonging to the swarm is modeled according to Eq. (11). The
performances of the derived feedback schemes are then tested in the
next sections with a full nonlinear simulation.

A. Q-Guidance

The first feedback we develop is inspired by the Q-guidance
steering law formally introduced by Battin [21] for rocket guidance.
It is based on definition of the velocity-to-be-gained vector vgi that
represents, in our case, the instantaneous difference between each
agent’s actual velocity vi and desired velocity vdi . The objective of
the control system is to drive the velocity-to-be-gained vector to zero.
From now on each quantity will be related to one agent. To simplify
the notation the subscript identifying the agent will be omitted. We
define the following function:

V � 1

2
vg � vg

The velocity-to-be-gained vector decreases along the trajectories
followed by each agent if and only if

_V � vg � _vg < 0 (13)

The time derivative of vg during the motion has the expression

_v g � _vd � _v

We substitute into this relation the momentum balance of each
spacecraft written in the LHLV frame:

_v� ain � adis � u

where u is the control vector, ain is the acceleration of the spacecraft
due to inertial forces, and adis is the acceleration due to nonmodeled
disturbance forces. The following expression is obtained:

_v g � _vd � ain � adis � u

Because _vd is a sole function of t and x [see Eqs. (2–5) and (12)], we
may express the desired velocity derivative in the following form:

_v d �
@vd
@t
� @vd
@x

v� @vd
@t
� @vd
@x
�vd � vg�

As an example we consider the contribution given by the sole gather
behavior defined by Eq. (12). In this particular case the time
derivative of the desired velocity has the expression

_v d � ain �
@vd
@x

vg

and the resulting total time derivative of the velocity to be gainedmay
be written in the following compact form:

_v g ��u � adis �
@vd
@x

vg ��u � adis � B�1Avg (14)

To make _V < 0 we introduce the following feedback:

u � �vg � _vd � ain (15)

in which � > 0 is a positive real parameter whose choice will be
discussed later in this section. Substituting Eq. (15) in Eq. (13) we
have

_V � vg � ���vg � adis� � ��jjvgjj2 � adis � vg < 0 (16)

Note that the Lyapunov function in Eq. (16) contains an uncertain
term that does not allow, in principle, any conclusion on the
convergence of the feedback. If jjadisjj < adis it is, however, possible
to find a lower bound on the value of the parameter � that ensures
vg < ~vg. For a given vg the worst scenario occurs whenever the
unknown perturbation is such that

a dis �� �adis
vg
jjvgjj

(17)

Therefore if � > �adis= ~vg, it follows that _V < 0 along the trajectories
followed by each agent as long as jjvgjj > ~vg.

In real cases the magnitude of the control feedback cannot be
arbitrarily large because the agents will typically have an upper limit
to the thrust magnitude. Therefore a saturation level must be
introduced into the feedback defined in Eq. (15). This way we lose
the mathematical result on the feedback global stability.
Nevertheless, it is always possible to choose the  functions and
parameters b, kA, and kD such that local stability is ensured, that is,
for limited jjvg�t� 0�jj the saturation level is never reached.

Different choices of the � parameter in Eq. (15) allow derivation of
different feedback strategies. In particular, steering laws analogous
to the ones based on the Q-guidance [21] approach can be obtained.
In Fig. 4 the vectorial diagram of Eq. (15) is shown for two different
cases. u represents the control vector constrained in magnitude to
usat. The dotted line in both subfigures 4a and 4b represents the
direction of the velocity-to-be-gained vector at any given time.

If �!1, the control strategy is to thrust in the direction of the
velocity-to-be-gained vector as shown in Fig. 4a, regardless of the
contribution to _vg due to the noncontrollable terms _vd and ain. A
different strategy is to try aligning the time derivative ofvg tovg itself
(as shown Fig. 4b). In this case

_v g 	 vg � 0 (18)

We obtain the known cross-product steering law [21]. In our
notation, the corresponding value of � is such that

��vg � _vd � ain� � ��vg � _vd � ain� � u2sat

where usat is the saturation considered for the thrust vector modulus.

Fig. 4 Vectorial diagrams representing different strategies.
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B. Sliding-Mode Control

A state feedback can also be obtained using the results of the
sliding-mode control theory [22]. The aim of this approach is to
design a control law able to drive the system trajectory on a
predetermined manifold and keep it there once reached. The control
design procedure can be broken down in two different steps: first we
design a sliding manifold (or switching manifold) such that the
systemmotion restricted to it leads the swarmof satellites towards the
desired equilibrium configuration. Then we derive a control law that
forces the trajectories of the system to converge to the sliding
manifold and to stay on it thereafter.

The dynamical system to be controlled for each agent is�
_vi � aini

� adisi
� ui

_xi � vi
(19)

whereaini
is the inertial acceleration acting upon the agent;adisi

is the
disturbance acceleration such that jjadisjj < �adisi , and ui is the control
vector. Following the notation already introduced in this section for
the sake of simplicity, the indexwill be omitted hereafter. The sliding
manifold may be written in the following form:

� �x; v; t� � 0

where the relation ��x; v; t� has to be chosen such that the trajectory
that the system follows by “sliding” on the manifold will cause the
system to reach the final desired formation. The equilibrium shaping
techniquewe introduced in this paper is in fact amethod to build such
a sliding manifold. For the system in Eq. (19) the expression we use
for ��x; v; t� is

� �x; v; t� � vd � v� 0 (20)

where vd is defined in Eq. (5). Whenever the system is on the sliding
manifold it will stay on it if and only if the following relation is
satisfied at all times:

_��x; v; t� � 0

That is, according to Eq. (19) and to Eq. (20)

_v d � _v� _vd � ain � adis � u� 0

It is then possible to define the equivalent control ueq as a feedback
that keeps the state of the nominal systemon themanifold at all times:

u eq ��ain � _vd (21)

A particular case is when the gravitational gather behavior is the only
contribution to the desired velocity. Then the control force reduces to
zero, because on the sliding manifold we have

_v d �
@vd
@t
� @vd
@x

vd � ain

The dynamical system in Eq. (19) subject to the equivalent control
ueq will never leave the sliding manifold after having intersected it
once. It is nownecessary to add to the equivalent control another term
that acts when � ≠ 0 and is able to drive the system trajectory to
intersect the sliding manifold. The total control vector can then be
expressed as the sum of two contributions:

u � ueq � uN (22)

where ueq has been defined in Eq. (21). The vector u applied to the
systemEq. (19) couples the dynamics of each single spacecraft to the
other components of the swarm that the spacecraft can sense. A
switched control law in the form

uNi �
�
u�Ni�x; v; t� !�i�x; v; t�> 0

u�Ni�x; v; t� !�i�x; v; t�< 0

will force the system to fall onto the sliding manifold if the values

u�Ni , u
�
Ni

are chosen so that the velocities of the system will always

point towards it. The value chosen for the feedback gains is
determined according to the sign of the components of ��x; v; t�, also
called the “switching surface” for this reason. The control uNi is set to
zero on the switching surface. A Lyapunov method can be used to
find the values of the switching gains. Let us define the following
Lyapunov function:

V � 1

2
� � �

Then a control feedback must be derived to impose the time
derivative of V to be definite negative along the trajectory of the
system. The condition on the total time derivative of the Lyapunov
function can be imposed by

_V � �vd � v� � � _vd � _v�< 0

Recalling Eqs. (21) and (22), this becomes

_V < 0()�vd � v� � �uN � adis�> 0

The latter equation can bewritten in terms of the velocity to be gained
vector already defined:

v g � �uN � adis�> 0 (23)

Each additional feedback law uN that meets this condition can be
used to drive the motion of the system towards the sliding manifold.
Consistently with the work presented by Gazi [16] and to keep the
derivation close to the classical sliding-mode approach, the so-called
relays with constant gain [22] thrusting strategy for uN is introduced:

u N � u0 sign��� � u0 sign�vg� (24)

where the sign function is defined componentwise and u0 > �adis.
This definition clearly satisfies Eq. (23) and leads the system to reach
the sliding manifold and then the desired equilibrium configuration.
In real applications it is not usually possible to achieve ideal sliding
mode with the feedback uN , due to the occurrence of the so-called
chattering phenomena [16]. Different techniques may be considered
to mitigate this effect such as the boundary layer controller [23]. A
discussion about these methods is not included here for reasons of
space. As a final remark we note that the thrusting strategy u�
�vg � _vd � ain inspired by the Q-guidance method can be also
written as u� ueq � uN , where uN � �vg. In this sense, with the
sliding-mode theory one is also able to derive the feedback obtained
by following the velocity-to-be-gained vector approach.

C. Artificial Potential Approach

A different thrusting strategy can be obtained by starting from the
definition of an artificial potential function [6] for the whole swarm
V�x1; � � � ; xn; v1; � � � ; vn�, which has minimum points at all the
possible agent permutations in the final desired formation. Such a
function of the state of the system can be written as

V � 1

2

X
i

vi � vi �
X
i

X
j≠i

�ijA �xi � xj� �
X
i

X
j

�ijG�xi � �j�

�
X
i

X
j

�ijD�xi � �j� (25)

where �ijA , �
ij
D, and �

ij
G are defined according to the equilibrium

shaping technique so that

@�ijA
@xi
��vAvoidi

@�ijG
@xi
��vGatheri

@�ijD
@xi
��vDocki

and each quantity labeled with the i index is related to the ith agent.
The swarm will reach the target formation, avoiding intervehicle
collisions, whenever the function V�x1; � � � ; xn; v1; � � � ; vn� strictly
decreases during the motion. We get
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_V �
X
i

�
@V

@xi
_xi �

@V

@vi
_vi

�
�

X
i

� _vi � vdi� � vi < 0

Taking into account the ith agent’s equation of motion, it is possible
to use the following feedback ui � vdi � �ivi � aini

. Written in
terms of the velocity-to-be-gained vector, this becomes

u i � �ivgi � �1 � �i�vdi � aini
(26)

With this feedback the time derivative of the potential function is

_V�x1; � � � ; xn; v1; � � � ; vn� �
X
i

vi � ���ivi � adis�

which can be made definite negative for a certain range of spacecraft
velocities, so long as lower bounds on the �i parameters are chosen
using the same procedure described for the Q-guidance feedback.
With respect to the previously presented feedback design methods,
the one showed here relies upon a slightly different approach. First a
global artificial potential function is defined for the entire swarm of
satellites. This function is required to have a minimum value in
correspondance of the target formation (permutations are allowed)
and this may be achieved using the equilibrium shaping approach.
Next a control law is imposed, such that the potential function
decreases along the trajectories followed by the system. The resulting
feedback cannot be obtained from the Q-guidance or the sliding
mode and therefore represents an alternative to be considered.

VI. Simulation Results

In this section we present some numerical simulations performed
to study the performances of the discussed behavior-based control in
a geostationary (GEO) orbital environment. The simulation
integrates the equation of motion of each spacecraft, written in an
inertial frame, in which a disturbance acceleration has been included
to capture the perturbations due to differential solar radiation drag
and gravitational zonal harmonics, and modeled as white noise of
equivalent amplitude. We randomly placed N satellites within a
certain range and we activated the controller to study the swarm
behavior. We performed our simulations for different relative
geometries. We also considered different feedbacks given by the
following:

1) Equation (15) with � such that Eq. (18) is satisfied. We called
this feedback cross-product steering law (CPSL).

2) Equation (22) with u0 tuned in such a way as to make the
acquisition time of thefinal targets equal to that of theCPSLcase.We
called this feedback sliding-mode control (SMC).

3) Equation (15) with � tuned as for the SMC. We called this
feedback velocity to be gained (VTBG).

4) Equation (26) with � tuned as for the SMC. We called this
feedback artificial potential feedback (APF).

Typically, as a consequence of the control actuation, each agent
path includes different phases:

1) A powered part in which the initial velocity-to-be-gained vector
is driven to zero and in which a ballistic trajectory is reached.

2) A coasting phase in which the desired velocity and the actual
velocity are identical and the control system does not use the
actuators.

3) A last phase, activated within the sphere of radius Rs, in which
the agents are near to the final targets and each navigates toward one
of them, and the final geometry is acquired. In this phase the gather
behavior did not take into account the gravitational effect.

The final relative geometry was achieved only when every agent
occupied a target position such that the equilibrium shaping formula
was satisfied and the desired velocities were all zero. As an example
we show the trajectories followed by six satellites achieving a
hexagonal formation with a 6 m radius. For a hexagonal formation
the equilibrium shaping formula reduces to a single equation in two
unknowns, c and d. In a geostationary environment the dominating
perturbation is due to the solar radiation pressure [24]. For high-
altitude orbits (from 2:5 	 104 km) this perturbation is in fact 1 order
of magnitude larger then that induced by the higher harmonics of the
Earth’s gravity field, and to that induced by air drag. For a cylindrical
spacecraft ofmass 50 kg, radius 0.5m, and height 1.5m, aworst-case
value for the differential solar radiation drag is about 4 	 10�7 m=s2.
In the simulation a randomacceleration ofmagnitude 10�6 m=s2 was
included to model this effect with a conservative margin. Each
spacecraft belonging to the swarm started an average distance of
1000 m from the center of the final configuration. The saturation
value used for the thrust acceleration modulus was 0:005 m=s2 and
the feedback law used is the VTBG. The final formation was
achieved after 40,000 s, corresponding to roughly 0.5 times the
reference orbital period. This result was obtained by setting
b� 0:1222 s�1, d� 0:0444 s�1, and kA � kD � 3 m. The corre-
sponding value of the c parameter calculated according to the
equilibrium shaping formula was c� 2:2656 	 10�4 s�1. The
parameter �̂d appearing in the modified gather behavior was set to
�̂d � 39; 000 s. The choice of all such parameters, together with the
selection of the functions appearing in Eqs. (2–4), is a crucial issue,
and it deeply affects the properties of the desired kinematical field. In
particular relatively high values of the b parameter with respect to c
and d allow reduction of the probability of collisions between the
spacecraft. On the other hand, a high value of the c parameter reduces
the time required to acquire the target configuration. Therefore the
choice of such parameters always results from a tradeoff between
different objectives and may change from case to case. In Figs. 5 and
6, the trajectories followed by the spacecraft belonging to the swarm
are displayed. Figure 5 shows the motion of the swarm in the outer
part of the kinematical field where the gather behavior is given by
Eq. (12), whereas Fig. 6 shows the motion of the swarm in the very
last phase where the gather behavior is given by Eq. (2). The
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Fig. 5 Simulation of a swarm of satellites reaching a hexagonal regular

formation. First approaching phase.

−10
0

10
20 −20

−10
0

10

−200

−100

0

100

200

y(m)x(m)

z(
m

)

SC Position after t=38,500 s
SC Final Position

Fig. 6 Simulation of a swarm of satellites reaching an hexagonal

regular formation. Second approaching phase.

IZZO AND PETTAZZI 455



magnitudes of the spacecraft velocities are shown in Fig. 7. The
different phases described at the beginning of this section are visible
in this chart. Starting from a condition of zero initial velocity, the
spacecraft first tracked the ballistic trajectories that brought them into
the vicinity of the target configuration. In the last phase of the
maneuver (roughly after 38 	 105 s) the satellites reached the edge of
the inner part of the kinematical field. In this last phase of the
acquisition maneuver, the spacecraft first decelerated and then
accelerated again to acquire the final position. The expensive phases
of the whole procedure in terms of propellant consumption were the
very first seconds, when the engines were constantly saturated to
reach a ballistic trajectory (Fig. 8), and the last part of the formation
acquisition, when the gravity gradient was no longer considered in
the definition of the desired velocities (Fig. 9). It was in this phase
that each agent chose its final position and navigated toward it. An
average �v of about 0:55 m=s was required in this particular
maneuver by each agent. During the simulation the minimum
occurring intervehicle distance was 5.48 m.

In Fig. 10 the different feedbacks introduced are considered and
compared in terms of propellant consumption for this particular
simulation. This simulation shows how the SMC and the VTBG
feedback are outperforming the CPSL and the APF feedbacks. This
result was confirmed also by many other numerical simulations.

VII. Towards a Complex Lattice

To plan and control its path according to the equilibrium shaping
approach, each satellite is required to detect the position of the
neighboring spacecraft. This sensing capability may (in principle) be
provided in different ways, according to the particular mission
considered. Exploration missions [3] would probably use differing
solutions for low-Earth-orbit (LEO) formation flying missions or
GEO self-assembly concepts [2]. Large swarms of spacecraft are
sometimes also considered for scientific missions in which multiple
space platforms act in consort, collecting data to achieve a single
science objective [25]. We show here how a careful use of
intersatellite communications may overcome the limitations in the
possible final geometries achievable by the equilibrium shaping
approach. We consider a swarm of satellites divided into seed and
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Fig. 7 Velocities of the satellites along the trajectories.
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nonseed agents. Each seed is preassigned to a number of nonseed
agents. The nonseed agents need to know to which seed they have
been preassigned and the shape of the configuration they have to
acquire. On the other hand the seeds need only know the shape of
their desired configuration. We introduce a new avoid behavior
named “inner avoid”:

v Avoidin
i �

X
j

bin A�jjxi � xjjj; kAin��xi � xj�

where kAin < kA. Each spacecraft belonging to the swarm can
evaluate its own desired velocity field according to the expression

v di � vAvoidi � vAvoidini � vDocki � vGatheri (27)

where vAvoidi acts only between spacecraft belonging to the same
group. The seeds plan their path ignoring the nonseed agents (except
for the inner collision avoidance). They evaluate and track their
desired velocities vsi and communicate it to the nonseed agents
belonging to their group. The nonseed agents evaluate their desired
velocities vaj using the equilibrium shaping approach but in a frame

attached to the seed so that they will eventually acquire their target
formation around the seed. The control system of the nonseed agents
will therefore track a velocity given by the sum of the two
contributions: vtotj � vsi � vaj . Playing with the possible formation

achievable by the equilibrium shaping it is possible to build a scheme
that can build a number of complex lattices. The inner avoid behavior
ensures that agents belonging to different groupswill not collide.We
define d as the minimum distance between two spacecraft in the
chosen target configuration. To be able to apply the equilibrium
shaping formula in Eq. (8), the inner avoid behavior must be
negligible at a length scale d. This can be obtained by finding kAin so
that

8 i; jjvAvoidini �d; kAin �jj 
 min�jjvAvoidi jj; jjvDocki jj; jjvGatheri jj� (28)

When the final configuration is acquired, vAvoidini is the only
component in Eq. (27) that defines an interaction between nonseed
agents belonging to different groups. Thus the condition in Eq. (28)
ensures that the equilibrium shaping approach is still valid and that
no conflicts arise in the swarm among different groups of agents.

In the following paragraphs the principal features of this path-
planning scheme are shown through two different examples. To
simplify the simulations, each agent is assumed to have perfect
control, that is, it can perfectly track the desired kinematical field.
The desired kinematical field does not take into account the gravity
gradient. We take as a first example a group of 72 agents divided into
eight groups of eight nonseed agents, and a group of eight agents
considered as seeds. The agents are randomly placed in the proximity

of a large target configuration with the shape of a cubic lattice. The
average distance of the agents from the center of the desired
formation at t� 0 is 477.7 m and the standard deviation is 137.8 m.
In the final configuration the target positions form a cube of side
L� 80 m, whereas each group of nonseed spacecraft forms a cube
of side l� 16 m around each agent. The minimum distance between
two agents belonging to the formation is d� l, and letting
kAin � 4 m, the condition in Eq. (28) is satisfied. For the cube
formation the equilibrium shaping formula reduces to a single
uncoupled equation in three unknowns. It is then possible to choose
independently the values of the parameters b and d to select the
formation acquisition time. The parameters chosen for this
simulation are listed in Table 2. The final formation is acquired in
approximately 10,000 s. Figure 11a shows the actual assembly
sequence as returned by one of the performed simulations.

In the second examplewe drive the assembly of a large structure in
space. The objective is to form a flat structure that can be used as a
large reflector for deep space observation or solar power collection
purposes [2]. The reflector assembly can be accomplished by first
applying the equilibrium shaping technique to acquire a given target
formation and then exploiting a docking algorithm to assemble the
structure. Let us consider a swarm of 49 spacecraft, with a group of
seven homogeneous seeds and seven groups of six nonseed agents.
The target configuration is a lattice formation inwhich the seeds form
a centered hexagon of side R� 60 m while the nonseed agents are
disposed around each seed forming a hexagon of side r� 16 m. In
the target configuration the minimum distance between two agents
belonging to different groups is r. A value of the vAvoidin

characteristic length of kAin � 4 m satisfies the condition in Eq. (28).
All the seed target positions located at the vertices of the hexagon
(named �1; . . . ; �6) are equivalent with respect to a rotation of 60 deg
around the hexagon center and belong to a formation symmetry axis.
The remaining target position (named �7) is located at a formation
symmetry point. Therefore, by setting d1 � . . .� d6 � d and
c1 � . . .� c6 � c, the equilibrium shaping formula is recast into a
single scalar equation in the four unknowns c, d, c7, d7. Recall that
the b parameter is not included in the set of independent variables of
the equilibrium shaping formula but rather is considered as an

Table 2 Parameters for the simulation with 72 spacecraft acquiring a

lattice formation

Seeds Nonseeds

b, s�1 0.02751 0.0215
d, s�1 0.0075 0.0059
c, s�1 9:4964 	 10�5 7:4190 	 10�5

kA, m 40 8
kD, m 40 8

Fig. 11 Assembly sequence for two lattices.

IZZO AND PETTAZZI 457



independent parameter to be chosen by the system designer. The
values of d, c, d7, c7, and b used in this simulation for all the agents
are listed in Table 3. They have been chosen heuristically to reduce
the occurrence of local minima and to select a certain acquisition
time. Figure 11b visualizes the different phases of the assembly
procedure. At the initial time (Fig. 11b, frame 1) the 49 agents are
distributed in a cloud with an average distance with respect to the
swarm center of mass of 453.8 m and with a standard deviation of
147.1 m. The swarm acquires the desired lattice formation in
approximately 20,000 s following the path planned according to the
equilibrium shaping technique (Fig. 11b, from frame 2 to frame 7).
Once the final formation is acquired the spacecraft can perform the
docking maneuver, relying upon an autonomous docking procedure
(Fig. 11b, frame 8). A detailed discussion of the docking phase is out
of the scope of the present paper.

As a final remark we point out that the position of each agent in the
final formation is not completely preassigned, and the target selection
problem, as defined in Sec. III, is autonomously solved in real time by
the agents during the acquisition maneuver and taking into account
the seed, nonseed associations. All in all, the swarm composed of N
seeds and N groups of n agents autonomously decides which
configuration to acquire in the space among the �N!��n!�N
possibilities . The final configuration is thus chosen from 2:8163 	
1041 possible configurations in the simulation shown in Fig. 11a and
from 5:0554 	 1023 possibilities in the simulation shown in Fig. 11b.
The problem of self-assembling a hexagonal lattice has recently been
solved also at a molecular level by using an inverse method by
Rechtsman et al. [26]. Their technique is, however, not applicable to
satellites navigation and path planning, as it is inherently two-
dimensional. The similarity with the equilibrium shaping is anyway
important, and proves that inverse methods for self-assembly are
interesting in connection with different fields.

VIII. Conclusions

The equilibrium shaping technique introduced in this paper
represents a novel approach for satellite collaborative path planning.
It constitutes a rather simple algorithm that makes use only of local
sensory information and limited computational resources. For a
number offinal configurations described in this paper the equilibrium
shaping technique allows us not only to safely acquire and maintain
the formation, but also to autonomously assign a target position to
each satellite. Because the method is based on a behavioral-based
approach defined in terms of desired velocities, a velocity tracking
algorithm has to be implemented. Standard methods such as sliding-
mode control, Q-guidance, artificial potential, and cross-product
steering law are all suitable for this purpose. Although the method is
not limited to any particular environment, simulations of these
different feedbacks showed that the performances in terms of
propellant for applications in the geostationary orbit are well within
our technological capabilities. Complicated lattice geometries may
also be acquired using the equilibrium shaping technique at the cost
of adding some extra intersatellite communication capability.
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